get_curve_deviations(gt_model, dataset, spend_points=None, dynamic_range=False, **kwargs)
Calculates the ROI Curve deviations for select spend points at different aggregation levels
Source code in wt_ml/tuning/deviation_metrics.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
get_me_deviations(gt_model, dataset, layer_type, spend_points=None, **kwargs)
Calculates the Mixed Effect deviations for select spend points at different aggregation levels
Source code in wt_ml/tuning/deviation_metrics.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
get_price_elasticity_deviations(gt_model, dataset, spend_points=None, **kwargs)
Calculates the Price Elasticity deviations for select spend points at different aggregation levels
Source code in wt_ml/tuning/deviation_metrics.py
121 122 123 124 125 126 127 128 129 130 131 132 |
|
level_deviations(curve_df, level, parent_child_mapping={})
Calculate the average standard deviation of the curve points at a given level
Source code in wt_ml/tuning/deviation_metrics.py
26 27 28 29 30 31 32 33 34 35 36 |
|