Visualizer

Source code in wt_ml/output/viz_interface.py
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
class Visualizer:
    def __init__(
        self,
        final_model_dir: Path,
        dataset: EconomicDataset,
        data_batch: EconomicModelInput,
        final_model: EconomicNetwork | None = None,
        training_animation: bool = False,
        num_checkpoints: int = None,
        load_checkpoints_evenly: bool = True,
        min_epoch: int | None = None,
        max_epoch: int | None = None,
        additional_tracker_names: list[
            Literal[CONVERGNCE_TRACKER_NAME, HISTOGRAMS_TRACKER_NAME, IMPACTS_CONVERGENCE_TRACKER_NAME]
        ]
        | Literal["all"]
        | None = None,
        curve_settings: dict | None = None,
    ):
        self.ckpt_dirs = (
            get_checkpoint_paths(final_model_dir, num_checkpoints, load_checkpoints_evenly, min_epoch, max_epoch)
            if training_animation
            else None
        )
        self.training_animation = training_animation
        self.model_dir = final_model_dir
        self.dataset = dataset
        self.temp_dir = tempfile.TemporaryDirectory()
        self.trackers_built = False
        self.additional_tracker_names = additional_tracker_names or []
        self.curve_settings = curve_settings
        if final_model is None:
            self._final_model = self._build_model(dataset)
            self._final_model.restore(
                self.model_dir,
                no_trackers=False,
                catch_exceptions=False,
                partial_restore=False,
            )
        else:
            self._final_model = final_model
        self._build_and_write_trackers(data_batch)

    def _build_and_write_trackers(self, data_batch: EconomicModelInput):
        try:
            if self.training_animation:
                for i, ckpt_dir in tqdm(enumerate(self.ckpt_dirs)):
                    if i == 0:
                        ckpt_model = ModelWithTrackedDataSubset(
                            temp_dir=Path(self.temp_dir.name),
                            model=self._final_model,
                            dataset=self.dataset,
                            data_batch=data_batch,
                            additional_tracker_names=self.additional_tracker_names,
                            curve_settings=self.curve_settings,
                        )
                    ckpt_model.restore_and_write_trackers(ckpt_dir)
            else:
                final_model = ModelWithTrackedDataSubset(
                    temp_dir=Path(self.temp_dir.name),
                    model=self._final_model,
                    dataset=self.dataset,
                    data_batch=data_batch,
                    additional_tracker_names=self.additional_tracker_names,
                    curve_settings=self.curve_settings,
                )
                final_model.restore_and_write_trackers(self.model_dir)
            self.trackers_built = True
        except Exception as e:
            self.clean_up()
            raise e

    def _build_model(self, dataset: EconomicDataset) -> EconomicNetwork:
        with open(Path(__file__).parent.parent.parent / "cml" / "hyperparameters.yml", "r") as fp:
            hyperparameters = yaml.safe_load(fp)
        model = build_model(
            dataset=dataset,
            hyperparameters=hyperparameters,
            net_combination=copy.deepcopy(DEFAULT_NETWORK_COMBINATION),
            include_trackers=False,
            _disable_model_compile_cache=True,
        )
        _ = model(next(iter(dataset)))
        return model

    @cached_property
    def all_trackers(self) -> DataForViz:
        _all_trackers = {}
        for dir_path in Path(self.temp_dir.name).iterdir():
            trackers = load_model_trackers(dir_path)
            _all_trackers = merge_trackers(_all_trackers, trackers)

        return _all_trackers

    def visualize(
        self,
        data_creator: Callable[[Intermediary, dict], DataForViz],
        plot_creator: Callable[DataForViz, go.Figure | dict[str, go.Figure]],
        tracker_name: str,
        data_kwargs: dict | None = None,
        plot_kwargs: dict | None = None,
        show_plot=True,
        file_name: str | None = None,
        out_dir: str | Path | None = None,
        plot_title: str | None = None,
    ) -> go.Figure:
        """
        Visualize the data from the model using the registered functions
        """
        data_kwargs = data_kwargs or {}
        plot_kwargs = plot_kwargs or {}
        slider_label = sorted(list(self.all_trackers[f"all_{tracker_name}"].keys()))
        tracker_intermediaries = [self.all_trackers[f"all_{tracker_name}"][label] for label in slider_label]
        tracker_intermediaries = [
            intermediary["temporalnet"] if tracker_name == "intermediaries" else intermediary
            for intermediary in tracker_intermediaries
            if intermediary
        ]

        if self.training_animation:
            if data_creator.__name__ == get_impact_for_viz.__name__:
                data_list = [
                    data_creator(intermediary, is_animation_call=True, data_kwargs=data_kwargs)
                    for intermediary in tracker_intermediaries
                ]
            elif data_creator.__name__ in (
                get_convergence_for_viz.__name__,
                get_histograms_for_viz.__name__,
                get_impacts_convergence_for_viz.__name__,
            ):
                data_list = data_creator(tracker_intermediaries, data_kwargs)
            else:
                data_list = [
                    data_creator(intermediary, data_kwargs=data_kwargs) for intermediary in tracker_intermediaries
                ]

            if plot_creator.__name__ == viz_impacts.__name__:
                final_plot = plot_creator(pd.concat(data_list, axis=0), is_animation_call=True, viz_kwargs=plot_kwargs)
            elif plot_creator.__name__ == viz_convergence.__name__:
                final_plot = plot_creator(data_list, viz_kwargs=plot_kwargs | {"return_figure_flag": show_plot})
            elif plot_creator.__name__ in (viz_histograms.__name__, viz_impacts_convergence.__name__):
                final_plot = plot_creator(data_list, viz_kwargs=plot_kwargs)
            else:
                final_plot = get_animated_plot([plot_creator(data, plot_kwargs) for data in data_list], slider_label)
        else:
            data = data_creator(tracker_intermediaries[-1], data_kwargs=data_kwargs)
            final_plot = plot_creator(data, viz_kwargs=plot_kwargs)

        show_or_save_plots(final_plot, show_plot, file_name, plot_title, out_dir)

    def __del__(self):
        self.clean_up()

    def clean_up(self):
        self.temp_dir.cleanup()

visualize(data_creator, plot_creator, tracker_name, data_kwargs=None, plot_kwargs=None, show_plot=True, file_name=None, out_dir=None, plot_title=None)

Visualize the data from the model using the registered functions

Source code in wt_ml/output/viz_interface.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def visualize(
    self,
    data_creator: Callable[[Intermediary, dict], DataForViz],
    plot_creator: Callable[DataForViz, go.Figure | dict[str, go.Figure]],
    tracker_name: str,
    data_kwargs: dict | None = None,
    plot_kwargs: dict | None = None,
    show_plot=True,
    file_name: str | None = None,
    out_dir: str | Path | None = None,
    plot_title: str | None = None,
) -> go.Figure:
    """
    Visualize the data from the model using the registered functions
    """
    data_kwargs = data_kwargs or {}
    plot_kwargs = plot_kwargs or {}
    slider_label = sorted(list(self.all_trackers[f"all_{tracker_name}"].keys()))
    tracker_intermediaries = [self.all_trackers[f"all_{tracker_name}"][label] for label in slider_label]
    tracker_intermediaries = [
        intermediary["temporalnet"] if tracker_name == "intermediaries" else intermediary
        for intermediary in tracker_intermediaries
        if intermediary
    ]

    if self.training_animation:
        if data_creator.__name__ == get_impact_for_viz.__name__:
            data_list = [
                data_creator(intermediary, is_animation_call=True, data_kwargs=data_kwargs)
                for intermediary in tracker_intermediaries
            ]
        elif data_creator.__name__ in (
            get_convergence_for_viz.__name__,
            get_histograms_for_viz.__name__,
            get_impacts_convergence_for_viz.__name__,
        ):
            data_list = data_creator(tracker_intermediaries, data_kwargs)
        else:
            data_list = [
                data_creator(intermediary, data_kwargs=data_kwargs) for intermediary in tracker_intermediaries
            ]

        if plot_creator.__name__ == viz_impacts.__name__:
            final_plot = plot_creator(pd.concat(data_list, axis=0), is_animation_call=True, viz_kwargs=plot_kwargs)
        elif plot_creator.__name__ == viz_convergence.__name__:
            final_plot = plot_creator(data_list, viz_kwargs=plot_kwargs | {"return_figure_flag": show_plot})
        elif plot_creator.__name__ in (viz_histograms.__name__, viz_impacts_convergence.__name__):
            final_plot = plot_creator(data_list, viz_kwargs=plot_kwargs)
        else:
            final_plot = get_animated_plot([plot_creator(data, plot_kwargs) for data in data_list], slider_label)
    else:
        data = data_creator(tracker_intermediaries[-1], data_kwargs=data_kwargs)
        final_plot = plot_creator(data, viz_kwargs=plot_kwargs)

    show_or_save_plots(final_plot, show_plot, file_name, plot_title, out_dir)

merge_trackers(all_trackers, model_trackers)

Merge two dictionaries of tracked data.

Parameters:

Name Type Description Default
all_trackers Intermediary

A dictionary containing all tracked values of all checkpoints

required
model_trackers Intermediary

A dictionary containing all tracked values of a single checkpoint/model

required

Returns:

Name Type Description
dict DataForViz

A merged dictionary of tracked values of the single model with all checkpoints.

Source code in wt_ml/output/viz_interface.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def merge_trackers(all_trackers: Intermediary, model_trackers: Intermediary) -> DataForViz:
    """
    Merge two dictionaries of tracked data.

    Parameters:
        all_trackers (Intermediary): A dictionary containing all tracked values of all checkpoints
        model_trackers (Intermediary): A dictionary containing all tracked values of a single checkpoint/model

    Returns:
        dict: A merged dictionary of tracked values of the single model with all checkpoints.
    """
    for key, value in model_trackers.items():
        if key in all_trackers:
            all_trackers[key] |= model_trackers[key]
        else:
            all_trackers[key] = value

    return all_trackers