OutputPriceElasticity

Bases: ModelOutputItem

Source code in wt_ml/output/output_price_elasticity.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class OutputPriceElasticity(ModelOutputItem):
    def __init__(
        self,
        price_values: PriceElasticityTrackers | list[PriceElasticityTrackers] = None,
        encodings: Encodings | None = None,
        combine_granularities_flag: bool = False,
        final_df: pd.DataFrame | list[pd.DataFrame] = None,
        is_animation_call: bool = False,
    ):
        super().__init__(final_df, [price_values, encodings])
        self.final_df = final_df
        self.is_animation_call = is_animation_call
        if self.final_df is None:
            self.price_values = [
                RecursiveNamespace.parse(inter) if isinstance(inter, Mapping) else inter
                for inter in (price_values if isinstance(price_values, list) else [price_values])
            ]
            self.encodings = encodings
            self.combine_granularities_flag = combine_granularities_flag

    def get_price_elasticity_df(self, price_values: PriceElasticityTrackers):
        # return pandas dataframe
        # indexes are price indices (x-axis of price elasticity curve)
        # columns is a multiindex (
        # granularities string concatenated together,
        # [price elasticity multiplier + 'steps' for animation frames])
        index = pd.Index(to_numpy(price_values.price)[0, :, 0], name="spend")
        granularity_names, level_names = get_granularity_names(self.encodings, price_values.input)
        price_names = to_signal_names(price_values.signal_names)
        columns = pd.MultiIndex.from_tuples(
            [
                (*names, signal, vehicle)
                for names in granularity_names
                for signal in ("impact", "slope")
                for vehicle in price_names
            ],
            names=(*level_names, "value", "signal"),
        )
        me_df = pd.DataFrame(
            np.stack([price_values.impact, price_values.slope], axis=2)
            .transpose(1, 0, 2, 3)
            .reshape(index.shape[0], -1),
            index=index,
            columns=columns,
        )
        step_cols = pd.MultiIndex.from_tuples(
            [(*names, "step", signal) for names in granularity_names for signal in price_names],
            names=(*level_names, "value", "signal"),
        )
        return pd.concat(
            [
                me_df,
                pd.DataFrame(
                    np.full((len(me_df.index), len(step_cols)), to_numpy(price_values.step), dtype=np.int32),
                    index=me_df.index,
                    columns=step_cols,
                ),
            ],
            axis=1,
        )

    @cached_property
    def df(self) -> pd.DataFrame:
        """Get price elasticity dataframe"""
        if self.final_df is not None:
            return self.final_df

        price_elasticity_dfs = []
        for step_price_values in self.price_values:
            step_price_elasticity_df = self.get_price_elasticity_df(step_price_values)
            price_elasticity_dfs.append(
                combine_granularities(step_price_elasticity_df)
                if self.combine_granularities_flag
                else step_price_elasticity_df
            )

        price_elasticity_dfs = price_elasticity_dfs[0] if len(self.price_values) == 1 else price_elasticity_dfs

        return price_elasticity_dfs

    def visualize(
        self,
        price_devs: dict[str, int] | None = None,
        wibbles: list[str] | dict[str, int] | None = None,
        wibble_encodings: dict[str, int] | None = None,
        group_by_granularity: bool = True,
        show_both=False,
        height: int = 800,
        **kwargs,
    ) -> dict[str, go.Figure]:
        """Visualize price elasticity

        Args:
            price_devs (dict[str, int]): price_dev level values
            wibbles (list[str] | None, optional): Names of all the wibbles/keys. Defaults to None.
            wibble_encodings (dict[str, int]): Wibble encodings
            group_by_granularity (bool, optional): Flag to indicate whether to group and view the plots by granularity.
            Defaults to True.
            show_both (bool, optional): Flag to indicate whether to group plots both by granularity level and
            price_dev level. Defaults to False.
            height (int, optional): The height of the line or the scatter plot. Defaults to 800.
            show_plots (bool, optional): Flag to indicate whether to show the plots. Defaults to True.

        Returns:
            dict[str, go.Figure]: Prepared line or scatter plots of mixed effects dataframe of granularity names and/or
            signal names.
        """
        all_plots = {}
        animation_frame = "step" if self.is_animation_call else None
        price_elasticity_df = self.df
        if price_devs is None:
            first_df = price_elasticity_df[0] if isinstance(price_elasticity_df, list) else price_elasticity_df
            price_devs = {v: i for i, v in enumerate(first_df.columns.unique("signal"))}
        if isinstance(price_elasticity_df, list):
            if self.is_animation_call:
                price_elasticity_df = pd.concat(price_elasticity_df, axis=0)
            else:
                price_elasticity_df = pd.concat(price_elasticity_df, axis=1)
        if wibbles is None:
            if wibble_encodings:
                wibbles = list(wibble_encodings.keys())
            else:
                wibbles = price_elasticity_df.columns.unique("granularity").tolist()

        if group_by_granularity:
            all_plots = make_plots(
                price_elasticity_df,
                wibbles,
                "granularity",
                list(price_devs.keys()),
                animation_frame,
                height,
                **kwargs,
            )
        if not group_by_granularity or show_both:
            all_plots |= make_plots(
                price_elasticity_df,
                list(price_devs.keys()),
                "signal",
                wibbles,
                animation_frame,
                height,
                **kwargs,
            )

        return all_plots

df: pd.DataFrame cached property

Get price elasticity dataframe

visualize(price_devs=None, wibbles=None, wibble_encodings=None, group_by_granularity=True, show_both=False, height=800, **kwargs)

Visualize price elasticity

Parameters:

Name Type Description Default
price_devs dict[str, int]

price_dev level values

None
wibbles list[str] | None

Names of all the wibbles/keys. Defaults to None.

None
wibble_encodings dict[str, int]

Wibble encodings

None
group_by_granularity bool

Flag to indicate whether to group and view the plots by granularity.

True
show_both bool

Flag to indicate whether to group plots both by granularity level and

False
height int

The height of the line or the scatter plot. Defaults to 800.

800
show_plots bool

Flag to indicate whether to show the plots. Defaults to True.

required

Returns:

Type Description
dict[str, Figure]

dict[str, go.Figure]: Prepared line or scatter plots of mixed effects dataframe of granularity names and/or

dict[str, Figure]

signal names.

Source code in wt_ml/output/output_price_elasticity.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def visualize(
    self,
    price_devs: dict[str, int] | None = None,
    wibbles: list[str] | dict[str, int] | None = None,
    wibble_encodings: dict[str, int] | None = None,
    group_by_granularity: bool = True,
    show_both=False,
    height: int = 800,
    **kwargs,
) -> dict[str, go.Figure]:
    """Visualize price elasticity

    Args:
        price_devs (dict[str, int]): price_dev level values
        wibbles (list[str] | None, optional): Names of all the wibbles/keys. Defaults to None.
        wibble_encodings (dict[str, int]): Wibble encodings
        group_by_granularity (bool, optional): Flag to indicate whether to group and view the plots by granularity.
        Defaults to True.
        show_both (bool, optional): Flag to indicate whether to group plots both by granularity level and
        price_dev level. Defaults to False.
        height (int, optional): The height of the line or the scatter plot. Defaults to 800.
        show_plots (bool, optional): Flag to indicate whether to show the plots. Defaults to True.

    Returns:
        dict[str, go.Figure]: Prepared line or scatter plots of mixed effects dataframe of granularity names and/or
        signal names.
    """
    all_plots = {}
    animation_frame = "step" if self.is_animation_call else None
    price_elasticity_df = self.df
    if price_devs is None:
        first_df = price_elasticity_df[0] if isinstance(price_elasticity_df, list) else price_elasticity_df
        price_devs = {v: i for i, v in enumerate(first_df.columns.unique("signal"))}
    if isinstance(price_elasticity_df, list):
        if self.is_animation_call:
            price_elasticity_df = pd.concat(price_elasticity_df, axis=0)
        else:
            price_elasticity_df = pd.concat(price_elasticity_df, axis=1)
    if wibbles is None:
        if wibble_encodings:
            wibbles = list(wibble_encodings.keys())
        else:
            wibbles = price_elasticity_df.columns.unique("granularity").tolist()

    if group_by_granularity:
        all_plots = make_plots(
            price_elasticity_df,
            wibbles,
            "granularity",
            list(price_devs.keys()),
            animation_frame,
            height,
            **kwargs,
        )
    if not group_by_granularity or show_both:
        all_plots |= make_plots(
            price_elasticity_df,
            list(price_devs.keys()),
            "signal",
            wibbles,
            animation_frame,
            height,
            **kwargs,
        )

    return all_plots