OutputCurve

Bases: ModelOutputItem

Class to visualize roi curve

Source code in wt_ml/output/output_curve.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
class OutputCurve(ModelOutputItem):
    """Class to visualize roi curve"""

    def __init__(
        self,
        curve_values: CurveTrackers | list[CurveTrackers] | None = None,
        encodings: Encodings | None = None,
        dynamic_range: bool | float = False,
        combine_granularities_flag: bool = False,
        final_df: pd.DataFrame | list[pd.DataFrame] | None = None,
        is_animation_call: bool = False,
    ):
        super().__init__(final_df, [curve_values, encodings])
        self.final_df = final_df
        self.dynamic_range = dynamic_range
        self.is_animation_call = is_animation_call
        if self.final_df is None:
            assert encodings is not None, "Encodings is required"
            self.curve_values = curve_values if isinstance(curve_values, list) else [curve_values]
            self.encodings = encodings
            self.combine_granularities_flag = combine_granularities_flag

    def get_curve_df(
        self,
        curve_values: CurveTrackers,
    ) -> pd.DataFrame | tuple[pd.DataFrame, pd.Series]:
        if isinstance(curve_values, Mapping):
            curve_values = RecursiveNamespace.parse(curve_values)
        index, curve_np = get_curve_matrix(
            to_numpy(curve_values.spends),
            to_numpy(curve_values.impact),
            to_numpy(curve_values.slope),
            self.encodings["normalization_factor"],
            self.dynamic_range,
        )

        if self.dynamic_range:
            index = pd.Index(index, name="percentage_spend")
        else:
            index = pd.Index(index, name="spend")
        granularity_names, level_names = get_granularity_names(self.encodings, curve_values.input)
        vehicle_names = to_signal_names(curve_values.signal_names)
        columns = pd.MultiIndex.from_tuples(
            [
                (*names, signal, vehicle)
                for names in granularity_names
                for signal in ["impact", "slope"]
                for vehicle in vehicle_names
            ],
            names=(*level_names, "value", "signal"),
        )
        curve_df = pd.DataFrame(
            curve_np.reshape(index.shape[0], -1),
            index=index,
            columns=columns,
        )
        step_cols = pd.MultiIndex.from_tuples(
            [(*names, "step", vehicle) for names in granularity_names for vehicle in vehicle_names],
            names=(*level_names, "value", "signal"),
        )
        df = pd.concat(
            [
                curve_df,
                pd.DataFrame(
                    np.full((len(curve_df.index), len(step_cols)), to_numpy(curve_values.step), dtype=np.int32),
                    index=curve_df.index,
                    columns=step_cols,
                ),
            ],
            axis=1,
        )
        if self.dynamic_range:
            range_index = pd.MultiIndex.from_tuples(
                [(*names, vehicle) for names in granularity_names for vehicle in vehicle_names],
                names=(*level_names, "signal"),
            )
            max_vals = tf.math.reduce_max(curve_values.spends, axis=1, keepdims=True)
            range_series = pd.Series(
                self.encodings["normalization_factor"] * to_numpy(max_vals[:, 0]).reshape(-1),
                index=range_index,
                name="max_val",
            )
            return df, range_series
        else:
            return df

    def get_plot_range(self, curve_df: pd.DataFrame, cols: list[str]) -> tuple[float, float]:
        values = curve_df[cols].values
        return (0.0, float(1.1 * np.where(np.isnan(values), 0.0, values).max()))

    @cached_property
    def df(
        self,
    ) -> pd.DataFrame | list[pd.DataFrame] | tuple[pd.DataFrame | list[pd.DataFrame], pd.Series | list[pd.Series]]:
        """Get the curve dataframe"""
        if self.final_df is not None:
            return self.final_df

        curve_dfs: list[pd.DataFrame] = []
        range_series: list[pd.Series] = []
        for step_curve_values in self.curve_values:
            step_curve_result = self.get_curve_df(step_curve_values)
            if self.dynamic_range:
                curve_df, range_ser = step_curve_result
                if TYPE_CHECKING:
                    assert isinstance(curve_df, pd.DataFrame)
                    assert isinstance(range_ser, pd.Series)

                curve_dfs.append(combine_granularities(curve_df) if self.combine_granularities_flag else curve_df)
                range_series.append(range_ser)
            else:
                if TYPE_CHECKING:
                    assert isinstance(step_curve_result, pd.DataFrame)

                curve_dfs.append(
                    combine_granularities(step_curve_result) if self.combine_granularities_flag else step_curve_result
                )

        final_curve_dfs = curve_dfs[0] if len(self.curve_values) == 1 else curve_dfs
        if self.dynamic_range:
            final_range_series = range_series[0] if len(self.curve_values) == 1 else range_series
            return final_curve_dfs, final_range_series

        return final_curve_dfs

    @property
    def visualization_df(self):
        if not self.dynamic_range:
            return self.df

        return self.df[0]

    def visualize(
        self,
        wibbles: Sequence[str] | None = None,
        vehicle_names: Sequence[str] | None = None,
        wibble_encodings: dict[str, int] | None = None,
        vehicle_encodings: dict[str, int] | None = None,
        group_by: Literal["granularity", "signal"] | None = None,
        group_by_granularity: bool = True,
        show_both=False,
        **kwargs,
    ) -> dict[str, go.Figure]:
        """Visualize curve

        Args:
            wibbles (Sequence[str] | None, optional): Granularity names. Defaults to None.
            vehicle_names (Sequence[str] | None, optional): Vehicle names. Defaults to None.
            wibble_encodings (dict[str, int] | None, optional): Granularity encodings. Defaults to None.
            vehicle_encodings (dict[str, int] | None, optional): Vehcile encodings. Defaults to None.
            group_by (Literal["granularity", "signal"] | None, optional): Level name by which to group and
            view the plots. Defaults to None.
            group_by_granularity (bool, optional): Granularity names by which to group and view the plots.
            Defaults to True.
            show_both (bool, optional): Flag to indicate whether to group plots both by granularity level and
            signal level. Defaults to False.
            show_plots (bool, optional): Flag to indicate whether to show the plots. Defaults to True.

        Returns:
            dict[str, go.Figure]: Prepared line or scatter plots of curve dataframe.
        """
        all_plots = {}
        if show_both:
            all_plots |= self.visualize(
                granularities=wibble_encodings,
                vehicles=vehicle_encodings,
                granularity_names=wibbles,
                vehicle_names=vehicle_names,
                group_by="granularity",
                show_both=False,
                **kwargs,
            )
            all_plots |= self.visualize(
                granularities=wibble_encodings,
                vehicles=vehicle_encodings,
                granularity_names=wibbles,
                vehicle_names=vehicle_names,
                group_by="signal",
                show_both=False,
                **kwargs,
            )
            return all_plots

        # Prepare animation frame and curve_df
        animation_frame = "step" if self.is_animation_call else None
        curve_df = self.visualization_df
        if isinstance(curve_df, list):
            if self.is_animation_call:
                curve_df = pd.concat(curve_df, axis=0)
            else:
                curve_df = pd.concat(curve_df, axis=1)
        if TYPE_CHECKING:
            assert isinstance(curve_df, pd.DataFrame)
        if wibbles is None:
            if wibble_encodings:
                wibbles = list(wibble_encodings.keys())
            else:
                wibbles = curve_df.columns.unique("granularity").tolist()

        level_name = curve_df.columns.names[-1] if "signal" not in curve_df.columns.names else "signal"
        if vehicle_names is None:
            if vehicle_encodings is None:
                vehicle_names = list(curve_df.columns.unique(level_name))
            else:
                vehicle_names = list(vehicle_encodings.keys())
        if group_by is None:
            group_by = "granularity" if group_by_granularity else level_name

        all_plots = make_plots(
            curve_df,
            wibbles if group_by == "granularity" else vehicle_names,
            group_by,
            vehicle_names if group_by == "granularity" else wibbles,
            animation_frame,
            get_range=self.get_plot_range,
            **kwargs,
        )
        return all_plots

df: pd.DataFrame | list[pd.DataFrame] | tuple[pd.DataFrame | list[pd.DataFrame], pd.Series | list[pd.Series]] cached property

Get the curve dataframe

visualize(wibbles=None, vehicle_names=None, wibble_encodings=None, vehicle_encodings=None, group_by=None, group_by_granularity=True, show_both=False, **kwargs)

Visualize curve

Parameters:

Name Type Description Default
wibbles Sequence[str] | None

Granularity names. Defaults to None.

None
vehicle_names Sequence[str] | None

Vehicle names. Defaults to None.

None
wibble_encodings dict[str, int] | None

Granularity encodings. Defaults to None.

None
vehicle_encodings dict[str, int] | None

Vehcile encodings. Defaults to None.

None
group_by Literal['granularity', 'signal'] | None

Level name by which to group and

None
group_by_granularity bool

Granularity names by which to group and view the plots.

True
show_both bool

Flag to indicate whether to group plots both by granularity level and

False
show_plots bool

Flag to indicate whether to show the plots. Defaults to True.

required

Returns:

Type Description
dict[str, Figure]

dict[str, go.Figure]: Prepared line or scatter plots of curve dataframe.

Source code in wt_ml/output/output_curve.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
def visualize(
    self,
    wibbles: Sequence[str] | None = None,
    vehicle_names: Sequence[str] | None = None,
    wibble_encodings: dict[str, int] | None = None,
    vehicle_encodings: dict[str, int] | None = None,
    group_by: Literal["granularity", "signal"] | None = None,
    group_by_granularity: bool = True,
    show_both=False,
    **kwargs,
) -> dict[str, go.Figure]:
    """Visualize curve

    Args:
        wibbles (Sequence[str] | None, optional): Granularity names. Defaults to None.
        vehicle_names (Sequence[str] | None, optional): Vehicle names. Defaults to None.
        wibble_encodings (dict[str, int] | None, optional): Granularity encodings. Defaults to None.
        vehicle_encodings (dict[str, int] | None, optional): Vehcile encodings. Defaults to None.
        group_by (Literal["granularity", "signal"] | None, optional): Level name by which to group and
        view the plots. Defaults to None.
        group_by_granularity (bool, optional): Granularity names by which to group and view the plots.
        Defaults to True.
        show_both (bool, optional): Flag to indicate whether to group plots both by granularity level and
        signal level. Defaults to False.
        show_plots (bool, optional): Flag to indicate whether to show the plots. Defaults to True.

    Returns:
        dict[str, go.Figure]: Prepared line or scatter plots of curve dataframe.
    """
    all_plots = {}
    if show_both:
        all_plots |= self.visualize(
            granularities=wibble_encodings,
            vehicles=vehicle_encodings,
            granularity_names=wibbles,
            vehicle_names=vehicle_names,
            group_by="granularity",
            show_both=False,
            **kwargs,
        )
        all_plots |= self.visualize(
            granularities=wibble_encodings,
            vehicles=vehicle_encodings,
            granularity_names=wibbles,
            vehicle_names=vehicle_names,
            group_by="signal",
            show_both=False,
            **kwargs,
        )
        return all_plots

    # Prepare animation frame and curve_df
    animation_frame = "step" if self.is_animation_call else None
    curve_df = self.visualization_df
    if isinstance(curve_df, list):
        if self.is_animation_call:
            curve_df = pd.concat(curve_df, axis=0)
        else:
            curve_df = pd.concat(curve_df, axis=1)
    if TYPE_CHECKING:
        assert isinstance(curve_df, pd.DataFrame)
    if wibbles is None:
        if wibble_encodings:
            wibbles = list(wibble_encodings.keys())
        else:
            wibbles = curve_df.columns.unique("granularity").tolist()

    level_name = curve_df.columns.names[-1] if "signal" not in curve_df.columns.names else "signal"
    if vehicle_names is None:
        if vehicle_encodings is None:
            vehicle_names = list(curve_df.columns.unique(level_name))
        else:
            vehicle_names = list(vehicle_encodings.keys())
    if group_by is None:
        group_by = "granularity" if group_by_granularity else level_name

    all_plots = make_plots(
        curve_df,
        wibbles if group_by == "granularity" else vehicle_names,
        group_by,
        vehicle_names if group_by == "granularity" else wibbles,
        animation_frame,
        get_range=self.get_plot_range,
        **kwargs,
    )
    return all_plots