ConstrainedPLNetwork

Bases: ModelBasedNetwork

Source code in wt_ml/optimizer/constrained_pl/constrained_pl.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class ConstrainedPLNetwork(ModelBasedNetwork):
    def build(self, input_shapes):
        super().build(input_shapes)
        self.barrier_strength = self.hyperparameters.get_float(
            "barrier_strength",
            default=1.0,
            min=1.0,
            max=1e08,
            help="The strength of the barriers on the borders of the constraints.",
        )

    def get_constraints(self) -> tf.Tensor:
        # We do a custom gradient here to prevent memory usage explosion with the number of constraints.
        # The gradient is very structured and we can take advantage of that to massively reduce memory requirements.
        @tf.custom_gradient
        def inner(all_vehicle_spends):
            gathers = []
            for constraint in self.constraint_specs:
                gathered = all_vehicle_spends
                for axis_name, indices in constraint.gathers:
                    axis = self.AXIS_MAPPING[axis_name]
                    gathered = tf.gather(gathered, tf.constant(indices, dtype=tf.int32), axis=axis)
                constrained = tf.reduce_sum(gathered) - constraint.max_value
                if not constraint.negate:
                    constrained = constrained * -1.0
                gathers.append(constrained)

            def grad(upstream):
                zeros = tf.zeros_like(all_vehicle_spends)
                upstreams = tf.unstack(upstream, axis=0, num=len(self.constraint_specs))
                for scalar, constraint in zip(upstreams, self.constraint_specs):
                    zeros = zeros + constraint.broadcast(
                        self.all_vehicle_spends.shape, scalar=(1.0 if constraint.negate else -1.0) * scalar
                    )
                return zeros

            return (
                tf.stack(
                    gathers,
                    axis=0,
                    name="constraints",
                ),
                grad,
            )

        return inner(self.vehicle_spends)

    def get_grads(self, batch: EconomicModelInput | ExtendedROICurveInput, all_grads: bool = False):
        """
        Algorithm is a first-order version of
        https://en.wikipedia.org/wiki/Interior-point_method#Primal-dual_interior-point_method_for_nonlinear_optimization
        where instead of using newton's method to find a zero of the gradient we directly do gradient descent.
        """
        self.clear()
        self.trained_net.clear()
        mu = self.optimizer.learning_rate * tf.constant(self.barrier_strength, dtype=tf.float32)
        with tf.GradientTape(watch_accessed_variables=False, persistent=all_grads) as tape:
            tape.watch(self.all_vehicle_spends)
            intermediaries = self(batch, training=True)
            targets = self.calculate_objectives(intermediaries, batch)
            if self.optimization_target == "neg_spend":
                objective = -tf.math.reduce_sum(targets["spend"])
            else:
                objective = tf.math.reduce_sum(targets[self.optimization_target])
            for key, value in targets.items():
                self.add_metric(key, tf.math.reduce_sum(value, axis=1))
            self.add_metric("objective", tf.math.reduce_sum(targets[self.optimization_target], axis=1))
            barrier = tf.constant(0, dtype=tf.float32)
            worst_constraint = tf.constant(0, dtype=tf.float32)
            if len(self.constraint_specs) > 0:
                constraint_tensors = self.get_constraints()
                # Negative constraint values means the constraint is violated so this helps monitor that.
                worst_constraint = tf.math.reduce_min(constraint_tensors)
                barrier = -tf.math.reduce_sum(
                    tf.where(constraint_tensors > 0, mu, tf.math.maximum(1e-03, mu))
                    * tf.math.log(
                        tf.where(
                            constraint_tensors > 0,
                            constraint_tensors,
                            constraint_tensors - tf.stop_gradient(constraint_tensors) + 1e-05,
                        )
                    )
                )
            guarded_objective = objective + barrier
        grads = {"guarded_objective": tape.gradient(guarded_objective, self.all_vehicle_spends)}
        if all_grads:
            grads["objective"] = tape.gradient(objective, self.all_vehicle_spends)
            grads["barrier"] = tape.gradient(barrier, self.all_vehicle_spends)
        return (
            grads,
            {
                "total_spend": tf.math.reduce_sum(self.vehicle_spends),
                "loss": guarded_objective,
                "barrier": barrier,
                "worst_constraint": worst_constraint,
            }
            | {k: tf.reduce_sum(v) for k, v in targets.items()},
        )

    @tf.function
    def calculate_grad_magnitudes(self, batch: EconomicModelInput | ExtendedROICurveInput):
        grads, _ = self.get_grads(batch, all_grads=True)
        return {k: tf.norm(to_dense(grad)) for k, grad in grads.items()}

    @tf.function
    def train_step(self, batch: EconomicModelInput | ExtendedROICurveInput, return_grads: bool = False):
        grads, targets = self.get_grads(batch)
        grad = tf.where(
            (grads["guarded_objective"] < 0) | (self.all_vehicle_spends > 0),
            grads["guarded_objective"],
            tf.zeros_like(self.all_vehicle_spends),
        )
        self.optimizer.apply_gradients(((grad, self.all_vehicle_spends),))
        if not self.exact_spend:
            self.all_vehicle_spends.assign(tf.math.maximum(0.0, self.all_vehicle_spends))
        step = self._step_var.assign_add(1)
        if return_grads:
            gradients_tracker = {
                self.all_vehicle_spends.name: to_dense(grads["guarded_objective"]),
            }
            return (targets, targets, step, gradients_tracker)
        else:
            return (targets, targets, step)

get_grads(batch, all_grads=False)

Algorithm is a first-order version of https://en.wikipedia.org/wiki/Interior-point_method#Primal-dual_interior-point_method_for_nonlinear_optimization where instead of using newton's method to find a zero of the gradient we directly do gradient descent.

Source code in wt_ml/optimizer/constrained_pl/constrained_pl.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def get_grads(self, batch: EconomicModelInput | ExtendedROICurveInput, all_grads: bool = False):
    """
    Algorithm is a first-order version of
    https://en.wikipedia.org/wiki/Interior-point_method#Primal-dual_interior-point_method_for_nonlinear_optimization
    where instead of using newton's method to find a zero of the gradient we directly do gradient descent.
    """
    self.clear()
    self.trained_net.clear()
    mu = self.optimizer.learning_rate * tf.constant(self.barrier_strength, dtype=tf.float32)
    with tf.GradientTape(watch_accessed_variables=False, persistent=all_grads) as tape:
        tape.watch(self.all_vehicle_spends)
        intermediaries = self(batch, training=True)
        targets = self.calculate_objectives(intermediaries, batch)
        if self.optimization_target == "neg_spend":
            objective = -tf.math.reduce_sum(targets["spend"])
        else:
            objective = tf.math.reduce_sum(targets[self.optimization_target])
        for key, value in targets.items():
            self.add_metric(key, tf.math.reduce_sum(value, axis=1))
        self.add_metric("objective", tf.math.reduce_sum(targets[self.optimization_target], axis=1))
        barrier = tf.constant(0, dtype=tf.float32)
        worst_constraint = tf.constant(0, dtype=tf.float32)
        if len(self.constraint_specs) > 0:
            constraint_tensors = self.get_constraints()
            # Negative constraint values means the constraint is violated so this helps monitor that.
            worst_constraint = tf.math.reduce_min(constraint_tensors)
            barrier = -tf.math.reduce_sum(
                tf.where(constraint_tensors > 0, mu, tf.math.maximum(1e-03, mu))
                * tf.math.log(
                    tf.where(
                        constraint_tensors > 0,
                        constraint_tensors,
                        constraint_tensors - tf.stop_gradient(constraint_tensors) + 1e-05,
                    )
                )
            )
        guarded_objective = objective + barrier
    grads = {"guarded_objective": tape.gradient(guarded_objective, self.all_vehicle_spends)}
    if all_grads:
        grads["objective"] = tape.gradient(objective, self.all_vehicle_spends)
        grads["barrier"] = tape.gradient(barrier, self.all_vehicle_spends)
    return (
        grads,
        {
            "total_spend": tf.math.reduce_sum(self.vehicle_spends),
            "loss": guarded_objective,
            "barrier": barrier,
            "worst_constraint": worst_constraint,
        }
        | {k: tf.reduce_sum(v) for k, v in targets.items()},
    )