Module

Bases: Module

Source code in wt_ml/module/module.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class Module(tf.Module, metaclass=ModuleMetaclass):
    def __init__(
        self,
        hyperparameters: Hyperparams | None = None,
        name: str | None = None,
    ):
        if name is None:
            name = type(self).__name__
        super().__init__(name=name)
        self._local_metrics: dict[str, tf.keras.metrics.Metric] = {}
        self._local_losses: dict[str, LossWithMeta] = {}
        self._built = False
        self._local_all_variables = []
        if hyperparameters is None:
            self._hyperparameters: Hyperparams = FileHyperparameterConfig(name=self.name, rng=np.random.default_rng(23))
        elif isinstance(hyperparameters, dict):
            self._hyperparameters: Hyperparams = FileHyperparameterConfig(
                name=self.name,
                data=hyperparameters,
                rng=np.random.default_rng(23),
            )
        else:
            self._hyperparameters = hyperparameters

    @property
    def hyperparameters(self) -> Hyperparams:
        return self._hyperparameters

    def clear(self):
        self._local_losses = {}

    @tf.function
    def reset_metrics(self, num_metrics=0):  # noqa: U100 # Used for forcing retracing
        for metric in flatten_dict(self.metrics).values():
            metric.reset_state()

    @property
    def built(self):
        return self._built

    def __str__(self):
        return f"{self.name}-{type(self).__qualname__}"

    def __repr__(self):
        return f"{self.name}-{super().__repr__()}"

    @property
    def hyperparameter_tree(self) -> dict[str, Any]:
        return self.hyperparameters.hyperparameter_tree

    def create_var(
        self,
        name: str,
        shape: list[int],
        dtype: tf.dtypes.DType = tf.float32,
        initializer: Initializer | None = None,
        trainable: bool = True,
        annotated_shape: VALID_ANNOTATED_SHAPE | None = None,
    ) -> tf.Variable:
        from wt_ml.layers.layer_utils import make_initializer

        with tf.name_scope(name) as scope:
            if initializer is None:
                initializer = 0.0
            initializer = make_initializer(initializer, shape, dtype=dtype)
            var = tf.Variable(initializer, trainable=trainable, name=scope, dtype=dtype, shape=shape)
            setattr(var, "_annotated_shape", annotated_shape)
            self._local_all_variables.append(var)
            return var

    # This allows overriding existing losses if you pass in the same name.
    # This is needed for idempotence of the call method.
    def add_metric(self, name: str, value: tf.Tensor, sample_weights: tf.Tensor | None = None):
        if name not in self._local_metrics:
            self._local_metrics[name] = tf.keras.metrics.Mean(name=name)
        self._local_metrics[name].update_state(
            value, sample_weight=None if sample_weights is None else tf.expand_dims(sample_weights, -1)
        )

    # This allows overriding existing losses if you pass in the same name.
    # This is needed for idempotence of the call method.
    def add_loss(
        self,
        name: str,
        value: tf.Tensor,
        category: str = "aux",
        mult: float | None = None,
        sample_weights: tf.Tensor | None = None,
    ):
        loss_value = value if (value.shape == () or value.shape == (1,)) else tf.math.reduce_mean(value)
        self._local_losses[name] = LossWithMeta(category, lambda: loss_value, mult=mult)
        self.add_metric(name, value, sample_weights=sample_weights)

    def _get_flat_props_by_pred(self, pred) -> list:
        return [
            val
            for _, val in flatten_with_path(
                {k: v for k, v in vars(self).items() if k not in ["submodules", "__dict__"]}
            )
            if pred(val)
        ]

    def _get_dict_props_by_pred(self, pred) -> dict[str, Any]:
        # TODO (@legendof-selda) change typing in wt_core to acceept Iterator
        return from_path_items(
            (key, val)
            for key, val in flatten_with_path(
                {k: v for k, v in vars(self).items() if k not in ["submodules", "__dict__"]}
            )
            if pred(val)
        )

    @property
    def _local_children(self) -> list[Module]:
        result = self._get_flat_props_by_pred(lambda x: isinstance(x, Module))
        if TYPE_CHECKING:
            result = cast(list[Module], result)
        return result

    @property
    def _local_trn_vars(self) -> list[tf.compat.v1.Variable]:
        return [var for var in self._local_all_variables if var.trainable]

    @property
    def _local_non_trn_vars(self) -> list[tf.compat.v1.Variable]:
        return [var for var in self._local_all_variables if not var.trainable]

    def summary(self, detailed=False, tab_size=None, col_margin=1) -> str:
        """
        Prints out a summary of the entire Module
        detailed (bool): Show detailed summary. Defaults to False.
        tab_size (int): Size of indent, for each layer. If set to 0, will display as a table.
                        Defaults to 0 if detailed else 2.
        col_margin (int): Margin between each columns. Used in detailed summary. Defaults to 4.
        full (bool): Show the summary of the entire model if True, else only the current module and its children.
                        '*' indicates from where summary was called. Defaults to True.
        """
        if not self.built:
            raise AttributeError("Network is not compiled!")
        root = self  # TODO: need to look into bidirectional summary so it can be called anywhere
        if tab_size is None:
            tab_size = 0 if detailed else 2
        return "\n".join(print_summary(self, root, detailed=detailed, tab_size=tab_size, col_margin=col_margin))

    def build(self, input_shapes: InputShapes):  # noqa: U100
        ...

    def __call__(self, *args, **kwargs):  # noqa: U100
        ...

    children: list[Module]
    all_variables: list[tf.compat.v1.Variable]
    trn_vars: list[tf.compat.v1.Variable]
    non_trn_vars: list[tf.compat.v1.Variable]
    metrics: RecursiveMapping[tf.keras.metrics.Metric]
    losses: RecursiveMapping[LossWithMeta]
    train_overriden_variables: list[tf.compat.v1.Variable]
    call: Callable
    _compiled_call: Callable
    _name: str

summary(detailed=False, tab_size=None, col_margin=1)

Prints out a summary of the entire Module detailed (bool): Show detailed summary. Defaults to False. tab_size (int): Size of indent, for each layer. If set to 0, will display as a table. Defaults to 0 if detailed else 2. col_margin (int): Margin between each columns. Used in detailed summary. Defaults to 4. full (bool): Show the summary of the entire model if True, else only the current module and its children. '*' indicates from where summary was called. Defaults to True.

Source code in wt_ml/module/module.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def summary(self, detailed=False, tab_size=None, col_margin=1) -> str:
    """
    Prints out a summary of the entire Module
    detailed (bool): Show detailed summary. Defaults to False.
    tab_size (int): Size of indent, for each layer. If set to 0, will display as a table.
                    Defaults to 0 if detailed else 2.
    col_margin (int): Margin between each columns. Used in detailed summary. Defaults to 4.
    full (bool): Show the summary of the entire model if True, else only the current module and its children.
                    '*' indicates from where summary was called. Defaults to True.
    """
    if not self.built:
        raise AttributeError("Network is not compiled!")
    root = self  # TODO: need to look into bidirectional summary so it can be called anywhere
    if tab_size is None:
        tab_size = 0 if detailed else 2
    return "\n".join(print_summary(self, root, detailed=detailed, tab_size=tab_size, col_margin=col_margin))

TrainableModule

Bases: Module

Source code in wt_ml/module/trainable_module.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
class TrainableModule(Module):
    def __init__(
        self,
        hyperparameters: Hyperparams | None = None,
        name: str | None = None,
    ):
        super().__init__(hyperparameters=hyperparameters, name=name)
        self.trackers = NoDependency({k: {} for k in REQUIRED_KEYS})
        self.tracked = NoDependency({})
        self.targets = NoDependency(lambda: {})
        self._step_var = tf.Variable(0, shape=(), dtype=tf.int64, trainable=False)
        self._epoch_var = tf.Variable(0, shape=(), dtype=tf.int64, trainable=False)
        self.batch_indices: list[int] | np.ndarray | None = None
        self.optimizer = None
        self._compiled = False
        self._set_default_trackers()

    def _set_default_trackers(self):
        for key in REQUIRED_KEYS:
            self.trackers.setdefault(key, {})

    @property
    def compiled(self) -> bool:
        return self._compiled

    @property
    def step(self) -> int:
        return int(self._step_var)

    @property
    def epoch(self) -> int:
        return int(self._epoch_var)

    def compile(  # noqa: A003
        self,
        optimizer: tf.keras.optimizers.Optimizer | None = None,
        logged_keys: Literal["main", "all"] | list[str] = "all",
    ):
        def outputs():
            losses = flatten_dict(self.losses, sep="/")
            all_losses = self.get_all_losses()
            by_category = defaultdict(dict)
            for key, loss in losses.items():
                by_category[loss.category][key] = all_losses[key]
            self.add_metric("loss", tf.math.add_n(list(all_losses.values()), name="loss"))
            for category, cat_losses in by_category.items():
                if len(cat_losses) > 1:
                    self.add_metric(
                        f"{category}_loss",
                        tf.math.add_n(list(cat_losses.values()), name=f"{category}_loss")
                        / self._get_loss_lambda(category),
                    )
            metrics = {
                "/".join(k.split(":")[0].split("/")[-3:]): l.result()
                for k, l in flatten_dict(self.metrics, sep="/").items()
            }
            if logged_keys == "all":
                logged_key_set = set(metrics.keys())
            elif logged_keys == "main":
                logged_key_set = {f"{category}_loss" for category in by_category.keys()} | {"loss"}
            else:
                logged_key_set = set(logged_keys)
            return {k: v for k, v in metrics.items() if k in logged_key_set}

        self.targets = outputs
        if optimizer is None:
            optimizer = make_optimizer(self.hyperparameters)
        self.optimizer = optimizer
        # we create the compiled function externally, once so that we can easily decompile it when required.
        self.train_step: TrainStep = tf.function(self.python_train_step)
        self._compiled = True

    def decompile(self):
        del self.targets
        del self.optimizer
        del self.train_step
        self.targets = NoDependency(lambda **_: {})
        self.optimizer = None
        self._compiled = False

    def _get_loss_lambda(self, loss_category: str) -> float:  # noqa: U100
        return 1.0

    def get_all_losses(self) -> dict[str, tf.Tensor]:
        return {
            name: loss.value()
            * self._get_loss_lambda(loss.category)
            * (tf.constant(1.0, dtype=tf.float32) if loss.mult is None else loss.mult)
            for name, loss in flatten_dict(self.losses, sep="/").items()
        }

    def get_total_loss(self) -> tf.Tensor:
        return tf.math.add_n(
            list(self.get_all_losses().values()),
            name="loss",
        )

    def wipe_clean(self, reset_counters: bool = True, reset_trackers: bool = True):
        """re-initialize all variables"""
        if reset_trackers:
            self.trackers = NoDependency({k: {} for k in self.trackers})
            self._set_default_trackers()
        if reset_counters:
            self._step_var.assign(0)
            self._epoch_var.assign(0)

    def get_placeholder(
        self,
        name: str,
        data: pd.DataFrame | np.ndarray,
        batch: bool = False,
        last_is_sim: bool | None = None,
        batch_indices: list[int] | None = None,
        dtype: tf.DType = tf.float32,
    ) -> tf.Tensor:
        name = f"{name}_ph"
        if isinstance(data, pd.DataFrame):
            data = data.ext.values_1
        data_np = np.array(data, dtype=dtype.as_numpy_dtype)
        shape = list(data_np.shape)
        if last_is_sim or (last_is_sim is None and len(shape) > 0 and shape[-1] == 1):
            shape[-1] = None
        ph = None
        if batch:
            shape[0] = None
            batch_indices = self.batch_indices if batch_indices is not None else None
            if batch_indices is not None:
                data_np = data_np[batch_indices]
            ph = tf.convert_to_tensor(data_np, dtype=dtype)
        if ph is None:
            ph = tf.constant(data_np, dtype=dtype, shape=data_np.shape, name=name)
        return tf.ensure_shape(ph, shape=shape, name=name)

    def _make_aligned_string(self, values: dict[str, np.ndarray | "ScalarLike"]) -> str:
        max_k = max(len(k) for k in values.keys())
        return "\n".join(
            [
                f"{k: <{max_k}}: {np.average(v):013.8f}"
                for k, v in sorted(
                    values.items(),
                    key=lambda p: (np.inf if np.isnan(p[1]) else p[1]),
                )
            ]
        )

    def python_train_step(
        self, batch, optimizer: tf.optimizers.Optimizer, return_grads: bool = False
    ) -> tuple[dict[str, tf.Tensor], dict[str, tf.Tensor], tf.Tensor]:
        from wt_ml.layers.layer_utils import to_dense

        self.clear()
        for child in self.submodules:
            if isinstance(child, Module):
                child.clear()
        with tf.GradientTape() as tape:
            self(batch, training=True)
            total_loss = self.get_total_loss()
        trn_vars = self.trn_vars
        gradients = tape.gradient(total_loss, trn_vars)
        optimizer.apply_gradients(zip(gradients, trn_vars))
        step = self._step_var.assign_add(1)
        if return_grads:
            gradients_tracker = {
                variable.name: to_dense(grad) for grad, variable in zip(gradients, trn_vars) if grad is not None
            }
            return (self.targets(), self.get_all_losses() | {"loss": total_loss}, step, gradients_tracker)
        else:
            return (self.targets(), self.get_all_losses() | {"loss": total_loss}, step)

    @tf.function
    def calculate_grad_magnitudes(self, batch):
        from wt_ml.layers.layer_utils import to_dense

        self.clear()
        for child in self.submodules:
            if isinstance(child, Module):
                child.clear()
        with tf.GradientTape(persistent=True) as tape:
            self(batch, training=True)  # noqa: F841
            loss = self.get_total_loss()
            losses = self.get_all_losses()
        trn_vars = self.trn_vars
        gradients = tape.gradient(loss, trn_vars)
        gradients_tracker = {variable.name: to_dense(grad) for grad, variable in zip(gradients, trn_vars)}
        grad_magnitude_tracker = {k: tf.norm(v) for k, v in gradients_tracker.items() if v is not None}
        grad_magnitude_tracker["loss"] = tf.norm(
            tf.concat([tf.reshape(t, (-1,)) for t in gradients_tracker.values() if t is not None], axis=0)
        )
        for k, l in losses.items():
            l_grads = [tf.reshape(g, (-1,)) for g in tape.gradient(l, self.trn_vars) if g is not None]
            if len(l_grads) == 0:
                continue
            elif len(l_grads) == 1:
                flattened = l_grads[0]
            else:
                flattened = tf.concat(l_grads, axis=0)
            grad_magnitude_tracker[k] = tf.norm(flattened)
        return grad_magnitude_tracker

    def train(
        self,
        dataset_factory: Callable[[], Iterable],
        num_steps: int,
        epochs: int = 1,
        verbosity: bool | int = 1,
        print_keys: str | Sequence[str] = "all",
        callbacks: Sequence[Callback] | CallbacksList = (),
        track_grads: bool | int = False,
        smoothing: float = 0.0,
        min_interval: float = 0.25,
        unit_scale: bool = True,
        position: int | None = None,
        tqdm_args: dict[str, Any] = {},
        **kwargs,
    ):
        # kwargs only supports things we actually use.
        # Right now, only things that fall into track_kwarg_names are allowed. Else raise error.
        track_grads_frequency = to_frequency(track_grads)
        track_kwarg_names = [f"track_{key}" for key in self.tracked.keys()]
        track_frequency_values = {key: to_frequency(kwargs.get(f"track_{key}", 0)) for key in self.tracked.keys()}
        unrecognized = [k for k in kwargs.keys() if k not in track_kwarg_names]
        if len(unrecognized) > 0:
            raise TypeError(f"{unrecognized} are not valid keyword arguments for train.")
        verbosity_frequency = to_frequency(verbosity, default=1)

        assert self.optimizer is not None, "You must have an optimizer to train. Did you forget to compile?"

        for track_name in track_frequency_values.keys():
            self.trackers.setdefault(f"all_{track_name}", {})

        epoch_progress_bar = None
        if verbosity_frequency > 0:
            smoothing = 0.03 ** (1 / verbosity_frequency) if smoothing == 0 else smoothing
            epoch_progress_bar = self.get_epoch_progress(
                epochs, smoothing, unit_scale, min_interval, position, tqdm_args
            )

        if num_steps is None:
            raise ValueError("Refusing to train forever, you must provide num_steps if supplying an infinite dataset.")

        epoch_writer = None if epoch_progress_bar is None else epoch_progress_bar.write
        callbacks = callbacks if isinstance(callbacks, CallbacksList) else CallbacksList(callbacks)
        callbacks.register_model(self)
        callbacks.register_writer(epoch_writer)
        callbacks.on_train_start()
        for _ in range(epochs):
            batch_progress_bar = (
                self.get_batch_progress(num_steps, smoothing, unit_scale, min_interval, tqdm_args)
                if verbosity_frequency > 0 and num_steps > 1
                else None
            )
            finished = self.process_batches(
                dataset_factory,
                track_grads_frequency,
                track_frequency_values,
                callbacks,
                verbosity_frequency,
                print_keys,
                batch_progress_bar,
                epoch_progress_bar,
            )
            self._epoch_var.assign_add(1)
            if finished:
                if verbosity:
                    epoch_progress_bar.close()
                break
        callbacks.on_train_end()
        return self.trackers["all_losses"]

    def get_epoch_progress(self, epochs, smoothing, unit_scale, min_interval, position, tqdm_args):
        return tqdm(
            total=self.epoch + epochs,
            smoothing=smoothing,
            unit="epoch",
            dynamic_ncols=True,
            initial=self.epoch,
            unit_scale=unit_scale,
            mininterval=min_interval,
            position=position,
            **tqdm_args,
        )

    def get_batch_progress(self, num_steps, smoothing, unit_scale, min_interval, tqdm_args):
        return tqdm(
            total=num_steps,
            smoothing=smoothing,
            unit="step",
            dynamic_ncols=True,
            leave=False,
            unit_scale=unit_scale,
            mininterval=min_interval,
            **tqdm_args,
        )

    def process_batches(
        self,
        dataset_factory: Callable[[], Iterable],
        track_grads_frequency: int,
        track_frequency_values: dict[str, int],
        callbacks: CallbacksList,
        verbosity_frequency: int,
        print_keys: str | Sequence[str],
        batch_progress_bar: tqdm,
        epoch_progress_bar: tqdm,
        force_update: bool = False,
    ) -> bool:
        batch_write = batch_progress_bar.write if batch_progress_bar is not None else logger.info
        self.reset_metrics(num_metrics=len(self._local_metrics))
        finished = False
        outputs = {}
        for batch_index, batch in enumerate(dataset_factory()):
            current_step = self.step
            with tf.profiler.experimental.Trace("Train", step_num=current_step, _r=1):
                self.perform_tracking_operations(
                    current_step, track_grads_frequency, batch, track_frequency_values, force=force_update
                )
                outputs, losses, *_ = self.train_step(batch, optimizer=self.optimizer)
                outputs = {k: to_numpy(v) for k, v in outputs.items()}
                losses = {k: to_numpy(v) for k, v in losses.items()}
            if not callbacks.on_batch_end(outputs, batch, write=batch_write):
                finished = True
                break
            self.trackers["all_losses"][current_step] = losses
            self.trackers["all_metrics"][current_step] = outputs
            if verbosity_frequency > 0 and batch_index % verbosity_frequency == 0:
                _ = self.handle_verbose_operations(
                    verbosity_frequency, batch_index, print_keys, batch_progress_bar, outputs
                )
            if any(np.isnan(value) for key, value in outputs.items() if "loss" in key):
                raise ValueError(f"NaN Loss at step {current_step}!,\n{self._make_aligned_string(outputs)}")
        if verbosity_frequency > 0:
            self.handle_epoch_progress(verbosity_frequency, print_keys, epoch_progress_bar, outputs)
        if batch_progress_bar is not None:
            batch_progress_bar.close()
        self.trackers["epoch_metrics"][self.epoch] = outputs
        if not callbacks.on_epoch_end(self.trackers["epoch_metrics"][self.epoch]):
            finished = True
        self.reset_metrics(num_metrics=len(self._local_metrics))
        return finished

    def run_all_trackers(self):
        current_step = self.step
        for track_key, tracked_func in self.tracked.items():
            with tf.profiler.experimental.Trace(track_key):
                self.reset_metrics(num_metrics=len(self._local_metrics))
                self.trackers.setdefault(f"all_{track_key}", {})[current_step] = tracked_func()
                self.reset_metrics(num_metrics=len(self._local_metrics))

    def perform_tracking_operations(
        self, current_step, track_grads_frequency, batch, track_frequency_values, force: bool = False
    ):
        if track_grads_frequency and (force or current_step % track_grads_frequency == 0):
            with tf.profiler.experimental.Trace("Grads"):
                grad_magnitude_tracker = self.calculate_grad_magnitudes(batch)
            self.trackers["all_grad_magnitudes"][current_step] = to_numpy(grad_magnitude_tracker, skip_none=True)
        for track_key, track_value in track_frequency_values.items():
            if track_value and (force or current_step % track_value == 0):
                with tf.profiler.experimental.Trace(track_key):
                    self.reset_metrics(num_metrics=len(self._local_metrics))
                    self.trackers[f"all_{track_key}"][current_step] = self.tracked[track_key]()
                    self.reset_metrics(num_metrics=len(self._local_metrics))

    def handle_verbose_operations(self, verbosity_frequency, batch_index, print_keys, batch_progress_bar, outputs):
        output_keys = outputs.keys() if print_keys == "all" else print_keys
        if batch_progress_bar is not None and batch_index % verbosity_frequency == 0:
            batch_progress_bar.set_postfix(
                {key: f"{np.average(value):09.4f}" for key, value in outputs.items() if key in output_keys}
            )
            batch_progress_bar.update(verbosity_frequency)
        return output_keys

    def handle_epoch_progress(self, verbosity_frequency, print_keys, epoch_progress_bar, outputs):
        output_keys = outputs.keys() if print_keys == "all" else print_keys
        if verbosity_frequency > 0:
            epoch_progress_bar.set_postfix(
                {key: f"{metric:09.4f}" for key, metric in outputs.items() if key in output_keys}
            )
            epoch_progress_bar.update(1)

    def get_kwargs_to_save(self, **kwargs):  # noqa: U100
        return {
            "name": self.name,
            "hyperparameters": self.hyperparameter_tree,
        }

    def save_trackers(self, filepath: str | Path, include_trackers=False):
        with filepath.open("wb") as fp:
            if include_trackers:
                pickle.dump({k: list(v.items()) for k, v in self.trackers.items()}, fp)
            else:
                pickle.dump({k: [] for k in self.trackers.keys()}, fp)

    def save(self, folder: str | Path, include_trackers=False, **kwargs):
        saver = tf.train.Checkpoint(self)
        folder = Path(folder)
        folder.mkdir(parents=True, exist_ok=True)
        with (folder / self.KWARGS_FILE_NAME).open("w") as fp:
            yaml.safe_dump(self.get_kwargs_to_save(**kwargs), fp)
        saver.write(str(folder / "model"))
        self.save_trackers(folder / self.TRACKERS_FILE_NAME, include_trackers)
        with (folder / "meta.json").open("w+") as fp:
            # useful for debugging issues with model caching.
            json.dump({"id": str(id(self)), "name": self.name, "name_scope": str(self.name_scope.name)}, fp)
        self.hyperparameters.save(folder / "hyperparameters.yml")

    def restore_trackers(self, filepath: str | Path):
        from wt_ml.tuning.utils import in_cpu

        if filepath.exists():
            with filepath.open("rb") as fp:
                model_tracker = in_cpu(pickle.load)(fp)
                # We are looping across trackers as (v.items() if isinstance(v,dict) else v) to
                # handle backward compatibility with old trackers after the feature that converts
                # all trackers and intermediaries to dictionaries
                self.trackers = NoDependency(
                    {
                        k: {k1: v1 for k1, v1 in (v.items() if isinstance(v, dict) else v)}
                        for k, v in model_tracker.items()
                    }
                )
        self._set_default_trackers()

    def restore(
        self, path: str | Path, no_trackers: bool = False, partial_restore: bool = False, catch_exceptions: bool = True
    ):
        path = Path(path)
        if partial_restore:
            restore.partial_restore(self, path)
        else:
            saver = tf.train.Checkpoint(self)
            try:
                saver.read(str(path / "model")).expect_partial()
            except (ValueError, AssertionError) as err:
                if catch_exceptions:
                    logger.exception(err, f"Model unrestored. A {type(err).__name__} exception has occured.")
                else:
                    raise

        if path.is_dir():
            self.restore_trackers(path / self.TRACKERS_FILE_NAME) if not no_trackers else None
        else:
            raise FileNotFoundError(f"Path doesn't exist - {path}.")

    @classmethod
    def load_kwargs(cls, folder: str | Path, **kwargs):  # noqa: U100
        folder = Path(folder)
        with (folder / cls.KWARGS_FILE_NAME).open("r") as fp:
            loaded = yaml.safe_load(fp)
        return loaded

    @classmethod
    def from_save(
        cls,
        folder: str | Path,
        no_trackers: bool = False,
        override_kwargs: dict[str, Any] | None = None,
        build_argument=None,
        **kwargs,
    ):
        folder = Path(folder)
        constructor_kwargs = cls.load_kwargs(folder, **kwargs)
        if override_kwargs is not None:
            constructor_kwargs = constructor_kwargs | override_kwargs
        logger.info(f"Loading model {constructor_kwargs.get('name', cls.__name__)} from path {folder}.")
        model = cls(**constructor_kwargs)
        if build_argument is not None:
            model(build_argument, training=True, debug=False, skip_metrics=False)
        model.compile()
        model.restore(folder, no_trackers=no_trackers)
        return model

    @overload
    def get_tracker_at(self, name: str, epoch: Sequence[int] | Literal["all"]) -> list[Any]:  # noqa: U100
        ...

    @overload
    def get_tracker_at(self, name: str, epoch: int | None) -> Any:  # noqa: U100
        ...

    def get_tracker_at(self, name: str, epoch: EpochSpec = None) -> list[Any] | Any:
        all_name = f"all_{name}"
        if all_name not in self.trackers:
            self.trackers[all_name] = {}
        if epoch is None:
            if name in ("losses", "grads", "grad_magnitudes"):
                epoch = np.max(list(self.trackers[all_name].keys()))
            else:
                epoch = int(self.epoch)
            if epoch not in self.trackers[all_name]:
                if name not in self.tracked:
                    return None
                self.trackers[all_name][epoch] = self.tracked[name]()
        elif epoch == "all":
            cur_epoch = int(self.epoch)
            if cur_epoch not in self.trackers[all_name] and name not in ("losses", "grads", "grad_magnitudes"):
                self.trackers[all_name][cur_epoch] = self.tracked[name]()
            epoch = tuple(self.trackers[all_name].keys())
        return map_possible_seq(epoch, lambda ep: self.trackers[all_name][ep])

    def viz_tracker(
        self,
        name: str,
        label: str,
        epoch_min: int = 0,
        epoch_max: int | None = None,
        height: int = 800,
        smoothing: float = 0,
        is_epoch: bool = False,
    ):
        loss_df = pd.DataFrame(to_numpy(self.trackers[name])).T
        loss_df.columns.names = [label]
        loss_df.index.names = ["epochs"] if is_epoch else ["step"]
        loss_df.sort_values(label, axis=1, inplace=True)
        if smoothing > 0:
            if smoothing > 1:
                raise ValueError("Cannot have smoothing greater than one.")
            elif smoothing == 1:
                loss_df = loss_df.expanding(1).mean()
            else:
                loss_df = loss_df.ewm(alpha=1 - smoothing).mean()
        elif smoothing < 0:
            raise ValueError("Cannot have a smoothing less than zero.")
        idxs = loss_df.index >= epoch_min
        if epoch_max is not None:
            idxs = idxs & (loss_df.index <= epoch_max)
        fig = loss_df.loc[idxs].plot(backend="plotly", height=height)
        fig.update_layout(legend=dict(orientation="h", yanchor="bottom", y=-2, xanchor="left", x=0))
        return fig

    def viz_losses(self, **kwargs):
        return self.viz_tracker(name="all_losses", label="loss", is_epoch=False, **kwargs)

    def viz_metrics(self, epoch: bool = False, **kwargs):
        if epoch:
            return self.viz_tracker(name="epoch_metrics", label="loss", is_epoch=True, **kwargs)
        else:
            return self.viz_tracker(name="all_metrics", label="loss", is_epoch=False, **kwargs)

    def viz_grads(self, **kwargs):
        return self.viz_tracker(name="all_grad_magnitudes", label="gradient", is_epoch=False, **kwargs)

    TRACKERS_FILE_NAME = "trackers.pkl"
    KWARGS_FILE_NAME = "kwargs.yaml"

wipe_clean(reset_counters=True, reset_trackers=True)

re-initialize all variables

Source code in wt_ml/module/trainable_module.py
144
145
146
147
148
149
150
151
def wipe_clean(self, reset_counters: bool = True, reset_trackers: bool = True):
    """re-initialize all variables"""
    if reset_trackers:
        self.trackers = NoDependency({k: {} for k in self.trackers})
        self._set_default_trackers()
    if reset_counters:
        self._step_var.assign(0)
        self._epoch_var.assign(0)