Validates shape, columns and data for revenue, price, volume and distribution
across parquet, json and hdf5 for every wholesaler
Source code in wt_ml/dataset/data_validator/checks/check_wholesaler_non_investment.py
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 | def check_wholesaler_non_investment(dataloader: DataLoader) -> DataStatus:
"""Validates shape, columns and data for revenue, price, volume and distribution
across parquet, json and hdf5 for every wholesaler"""
data = dataloader.wholesaler_non_investment
statuses: list[StatusType] = []
messages: list[str] = []
hdf5_wholesalers = data.hdf5.wholesaler.unique()
for wh in hdf5_wholesalers:
wh_parquet = data.parquet.loc[data.parquet["wholesaler"] == wh]
wh_json = data.json.loc[data.json["wholesaler"] == wh]
wh_hdf5 = data.hdf5.loc[data.hdf5["wholesaler"] == wh]
hdf5_columns = wh_hdf5.columns
wh_json_date = wh_json.loc[wh_json["date"].isin(dataloader.date_idx), hdf5_columns]
wh_json_date = wh_json_date.sort_values(by=["date", "brand_code", "product_code"])
wh_hdf5_date = wh_hdf5.loc[wh_hdf5["date"].isin(dataloader.date_idx)]
wh_hdf5_date = wh_hdf5_date.sort_values(by=["date", "brand_code", "product_code"])
if wh_parquet.shape == wh_json.loc[wh_json.sales != 0].shape:
statuses.append(StatusType.PASS)
else:
statuses.append(StatusType.FAIL)
messages.append(
f"Shapes mismatch between parquet {wh_parquet.shape} and "
f"json {wh_json.loc[wh_json.sales != 0].shape} in wholesaler NON Investment data for wholesaler : {wh}"
)
if all(wh_hdf5.columns.isin(wh_json.columns)):
statuses.append(StatusType.PASS)
else:
statuses.append(StatusType.FAIL)
messages.append(
f"Following columns mismatch between hdf5 and json: {wh_hdf5.columns.difference(wh_json.columns)} for"
f"wholesaler : {wh}"
)
if wh_hdf5_date.select_dtypes([int, float]).shape == wh_json_date.select_dtypes([int, float]).shape:
if np.allclose(
wh_hdf5_date.select_dtypes([int, float]).values,
wh_json_date.select_dtypes([int, float]).values,
atol=ABS_TOLERANCE,
):
statuses.append(StatusType.PASS)
else:
statuses.append(StatusType.FAIL)
messages.append(
f"Data mismatch for hdf5 and json in wholesaler NON Investment data for wholesaler : {wh}"
)
else:
statuses.append(StatusType.FAIL)
messages.append(f"Shape mismatch for hdf5 and json in wholesaler NON Investment data for wholesaler : {wh}")
return DataStatus(
status=StatusType.PASS if all(status == StatusType.PASS for status in statuses) else StatusType.FAIL,
message="\n".join(messages),
)
|